2012 Computational Neuroscience Courses
Course - Woods Hole, MA
Animals interact with a complex world, encountering a variety of challenges: They must gather data about the environment, discover useful structures in these data, store and recall information about past events, plan and guide actions, learn the consequences of these actions, etc. These are, in part, computational problems that are solved by networks of neurons, from roughly 100 cells in a small worm to 100 billion in humans. Methods in Computational Neuroscience introduces students to the computational and mathematical techniques that are used to address how the brain solves these problems at levels of neural organization ranging from single membrane channels to operations of the entire brain.
In each of the first three weeks, the course focuses on material at increasing levels of complexity (molecular/cellular, network, cognitive/behavioral), but always with an eye on these questions: Can we derive biologically plausible mechanisms that explain how nervous systems solve specific computational problems that arise in the laboratory or natural environment? Can these problems be decomposed into manageable pieces, and can we relate such mathematical decompositions to the observable properties of individual neurons and circuits? Can we identify the molecular mechanisms that provide the building blocks for these computations, as well as understand how the building blocks are organized into cells and circuits that perform useful functions?
Core presentations in weeks one to three will be given jointly by theorists and experimentalists who have worked, often together, on the same problems. In the first week, to supplement the lectures, there will be numerous optional tutorials covering topics including dynamical systems, information theory, UNIX basics, and simulation using NEURON, MATLAB, and XPP. As each week progresses, the issues brought up in these presentations will be explored in laboratory demonstrations and exercises that invite the students to follow and generalize from the paths outlined in the lectures. Exercises involve both quantitative analysis of experimental data and exploration of models through analytic and numerical techniques. To reinforce the theme of collaboration between theory and experiment, exercises are often performed in teams that combine students with theoretical and experimental backgrounds.
29th July - 26th August 2012
Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543
If you'd like to ask a question or post a comment about this talk please do so below.
This seminar posting is brought to you by Biotechnology Calendar, Inc. providing access to research information and research tools for nearly 20 years. Visit our Science Market Update Blog for current science funding and market information or see our schedule of upcoming science research laboratory